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Figure 1. Brain Decoding and Image Reconstruction. For the first time, our proposed MinD-Vis is capable of decoding fMRI-based brain
activities and reconstructing images with not only plausible details but also accurate semantics and image features (texture, shape, etc.), outperforming
previous approaches. Left: Task overview. Middle: Comparison with benchmarks. Right: More reconstruction examples.

Abstract
Decoding visual stimuli from brain recordings aims to

deepen our understanding of the human visual system and
build a solid foundation for bridging human and computer
vision through the Brain-Computer Interface. However,
reconstructing high-quality images with correct semantics from
brain recordings is a challenging problem due to the complex
underlying representations of brain signals and the scarcity of
data annotations. In this work, we present MinD-Vis: Sparse
Masked Brain Modeling with Double-Conditioned Latent
Diffusion Model for Human Vision Decoding. Firstly, we learn
an effective self-supervised representation of fMRI data using
mask modeling in a large latent space inspired by the sparse
coding of information in the primary visual cortex. Then by
augmenting a latent diffusion model with double-conditioning,
we show that MinD-Vis can reconstruct highly plausible images
with semantically matching details from brain recordings using
very few paired annotations. We benchmarked our model qual-
itatively and quantitatively; the experimental results indicate
that our method outperformed state-of-the-art in both semantic
mapping (100-way semantic classification) and generation
quality (FID) by 66% and 41% respectively. An exhaustive
ablation study was also conducted to analyze our framework.

*Equal contributions.
†Corresponding author (helen.zhou@nus.edu.sg)

1. Introduction

“What you think is what you see”. Human perception and
prior knowledge are deeply intertwined in one’s mind [52]. Our
perception of the world is determined not only by objective
stimuli properties but also by our experiences, forming complex
brain activities underlying our perception. Understanding these
brain activities and recovering the encoded information is a
key goal in cognitive neuroscience. Within this broad objective,
decoding visual information is one of the challenging problems
that are the focus of a large body of literature [22,28,35,68].

As a non-invasive and effective method to measure brain
activities indirectly, functional Magnetic Resonance Imaging
(fMRI) is usually used to recover visual information, such
as the image classes [21, 40]. With the help of recent deep
learning models, it is intriguing if the original visual stimuli
can be directly recovered from corresponding fMRI [2, 47],
especially with the guidance of biological principles [44, 53].
However, due to the lack of fMRI-image pairs and useful
biological guidance when decoding complex neural activity
from fMRI directly, reconstructed images are usually blurry and
semantically meaningless. Thus it is crucial to learn effective
and biological-valid representations for fMRI so that a clear and
generalizable connection between brain activities and visual
stimuli can be established with a few paired annotations.

Moreover, individual variability in brain representations
further complicates this problem. Individuals have unique
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brain activation patterns responding to the same visual stimulus
(See Fig. 2). From the perspective of fMRI representation learn-
ing, a powerful brain decoding algorithm should robustly rec-
ognize features shared across the population over a background
of individual variation [5, 21]. On the other hand, we should
also expect decoding variances due to the variation in individual
perceptions. Therefore, we aim to learn representations from
a large-scale dataset with rich demographic compositions and
relax the direct generation from fMRI to conditional synthesis al-
lowing for sampling variance under the same semantic category.

Self-supervised learning with pretext tasks in large datasets
is a powerful paradigm to distill the model with context
knowledge. A domain-specific downstream task (e.g. classi-
fication) is usually adopted to finetune the pre-trained model
further [37, 59], especially when the downstream dataset is
small. Various pretext tasks are designed to benefit downstream
tasks [23,67]. Among these methods, Masked Signal Modeling
(MSM) has achieved promising results in both vision [18,63]
and language understanding [8, 38] recently. At the same
time, the probabilistic diffusion denoising model has shown
its superior performance in content generation and training
stability [9]. A strong generation ability is also desired in our
task to decode faithful visual stimuli from various categories.

Driven by the above analysis, we propose MinD-Vis: Sparse
Masked Brain Modeling with Double-Conditioned Latent Dif-
fusion Model for Human Vision Decoding, a framework that ex-
ploits the power of large-scale representation learning and mim-
ics the sparse coding of information in the brain [14], including
the visual cortex [57]. Different from [18], we use a much larger
representation-to-data-space ratio to boost the information capac-
ity of learned representations. Our contributions are as follows:

• We propose Sparse-Coded Masked Brain Modeling
(SC-MBM), designed under biological guidance as an
effective brain feature learner for vision decoding.

• Augmenting the latent diffusion model with double condi-
tioning (DC-LDM), we enforce stronger decoding consis-
tency while allowing variance under the same semantics.

• Integrating the representation ability of SC-MBM with
the generation ability of DC-LDM, MinD-Vis generates
more plausible images with better preserved semantic
information compared with previous methods.

• Quantitative and qualitative tests are performed on
multiple datasets, including a new dataset that has not
previously been used to evaluate this task.

2. Related Work
Conventional Decoding Methods Conventional methods
rely on training with fMRI and corresponding hierarchical
image features extracted by a pre-trained VGG [21,47]. During
testing, the predicted image features will either be used for
classification or fed into a generative model like GAN [46] to

Figure 2. Individual Differences in Regions Responding to Visual
Stimuli. Masks of the regions of interest activating during the same
visual task differ in location and size across subjects. The primary visual
cortex at the left (red) and the right (orange) hemisphere are shown.

reconstruct the original stimulus. Instead of directly learning
the limited training pairs, [2] enabled unsupervised learning on
unpaired fMRI and images with a reconfigurable autoencoder
design. [16] further extended this method to images from
diverse semantic categories. However, just as with conventional
approaches, fMRI is used directly for training and decoding.
Authors in [32, 34] took a different approach. A regression
model was applied to extract latent fMRI representation, which
was then used to finetune a pre-trained conditional bigGAN.
Decoding is performed by conditionally sampling the bigGAN
with the fMRI latent. With this method, the decoded images
are more plausible and semantically meaningful.

Masked Signal Modeling The power of MSM in learning
representations from a large-scale dataset was first exploited
in [8], which was later adapted to computer vision [18,61,63].
Successful applications to downstream tasks show that useful
context knowledge is learned with MSM as a pretext task. In
essence, MSM is a generalized denoising autoencoder that aims
to recover the original data from the remaining after masking [4].
The portion of data to mask is different across data modalities,
with an extremely high mask ratio (75%) usually used for visual
signals [18]. In contrast, due to the disparity in information
density, a low mask ratio (25%) is used in natural languages [8].

Diffusion Probabilistic Models Diffusion models [50] are
emerging generative models that generate high-quality content.
In its basic form [20], the diffusion model is a probabilistic
model defined by a bi-directional Markov Chain of states. Two
processes are transiting through the chain: (i) The forward
diffusion process gradually adds noise to the data until it
is fully destroyed to an isotropic Gaussian noise; (ii) The
reverse process recovers the corrupted data by modeling a
posterior distribution p(x) at each state and eventually obtains
a sample in the original data distribution [20,50,51]. Formally,
assume a Markov Chain with a fixed length T , then the reverse
conditional probability can be expressed as q(xt−1|xt), where
t = 1,...,T and xt is obtained by corrupting the image xt−1

with Gaussian noise. After parameterization, this conditional
probability can be learned by optimizing a variational lower
bound which can be simplified to the following objective [20]:

Lsimple
t =Ex,ϵ∼N(0,1),t

[
∥ϵ−ϵθ(xt,t)∥22

]
, (1)

where ϵθ(xt,t) is a set of denoising functions that are usually
implemented as UNets [9,42,43]. We refer readers to [20] for
detailed descriptions of the diffusion models.



Figure 3. MinD-Vis. Stage A (left): Pre-train on fMRI with SC-MBM. We patchify, randomly mask the fMRI, and then tokenize them to large embed-
dings. We train an autoencoder (EMBM and DMBM) to recover the masked patches. Stage B (right): Integration with the LDM through double con-
ditioning. We project the fMRI latent (LfMRI) through two paths to the LDM conditioning space with a latent dimension projector (PfMRI→Cond).
One path connects directly to cross-attention heads in the LDM. Another path adds the fMRI latent to time embeddings. The LDM operates on
a low-dimensional, compressed version of the original image (i.e. image latent), however, the original image is used in this figure for illustrations.

Latent Diffusion Model (LDM) Apart from the conventional
diffusion models that generate samples in the original data
space, another category of diffusion models that generate
samples in the latent feature space has been proposed [42,49].
Operating in the latent feature space reduces the computational
cost and introduces less spatial downsampling, giving better
image synthesis quality. The LDM proposed in [42] consists of
two components: (i) Vector Quantization (VQ) regularized [12]
autoencoder that compresses images into lower-dimensional
latent features and then reconstructs the images from features in
the same space; (ii) UNet-based denoising model with attention
modules. Incorporating attention mechanisms into the UNet
allows the flexibility to condition image generation through
key/value/query vectors during the Markov Chain transitions.

3. Methodology

3.1. Motivation and Overview

In this subsection, we provide a detailed analysis of the
fMRI data and elaborate on the motivations of our designs.

(i) fMRI measures the brain blood-oxygen-level-dependent
(BOLD) changes as 3D voxels that serve as a proxy for the under-
lying changes in brain activity. Neighboring voxels often have
similar amplitudes, indicating spatial redundancy in fMRI [54].

(ii) fMRI data is averaged across the time during which the
stimulus is presented. A region of interest (ROI) of the averaged
data is usually extracted as a 1D vector of voxels (in the visual
processing hierarchy). The ROI size (voxel number) is generally
smaller than the image size (pixel number). For example, [21]
has about 4500 voxels (visual cortex), which is much smaller
than a 256×256 RGB image. This creates a large difference
in dimensionality when transforming fMRI into images.

(iii) fMRI data from different datasets may have significant
domain shifts due to experimental conditions and scanner setups.
Even with the same scan conditions, ROI size and location
mismatch persist due to individual differences (See Fig. 2).

Driven by this analysis, we propose MinD-Vis, designed
with two sequential stages as outlined in Fig. 3. Briefly, in
Stage A, fMRI representations are learned by an autoencoder
trained in a large fMRI dataset with masked signal modeling as
a pretext task. The learned representations will be used as a con-
dition to guide the image-generation process in the next stage.
In Stage B, the pre-trained fMRI encoder is integrated with the
LDM through cross-attention and time-step conditioning for con-
ditional synthesis. In this stage, the encoder is jointly finetuned
with cross-attention heads in the LDM using paired annotations.

3.2. Stage A: Sparse-Coded MBM (SC-MBM)

Activity in the human brain involves non-linear interactions
among 86 billion neuronal cells in the brain and are thus highly
complex [33,41]. The fMRI measuring the BOLD signals is an
indirect and aggregate measure of neuronal activities, which can
be analyzed hierarchically with functional networks [1,6,60].
These functional networks comprised of voxels of fMRI data
have implicit correlations with each other in response to external
stimuli [55,69]. Therefore, learning these implicit correlations
by recovering masked voxels will equip the pre-trained model
with a deep contextual understanding of the fMRI data.

Following [18], we divide the vectorized voxels into patches
which will be subsequently transformed into embeddings using a
1D convolutional layer with a stride equal to the patch size. The
hemodynamic response measured in fMRI BOLD signal causes
spatial blurring, which creates spatial redundancy in fMRI data,
like in natural images [11,48]. Due to the spatial redundancy,



Figure 4. Masked Brain Modeling. Mask ratio 0.75; 4500 voxels

fMRI data can still be recovered even if a large portion is masked
(See Fig. 4). Thus, in the first stage of MinD-Vis, we can
mask a large portion of the fMRI patches to save computations
without losing the learning power of masked modeling.

Masked Image Modeling (MIM) uses the embedding-to-
patch-size ratio around one [18], leading to a representation
size similar to the original data size. However, we use a large
embedding-to-patch-size ratio, which significantly increases
the information capacity with a large fMRI representation
space. This design also relates to the sparse coding of
information in the brain, which has been proposed as a general
strategy for the representation of sensory information [27].

We also adopt an asymmetric architecture as in [18]: the
encoder is optimized to learn effective fMRI representations,
while the decoder tries to predict the masked patches. Therefore,
we make the decoder small in size, and it is discarded in
Stage B as long as the pre-training converges.

Visual Encoding and Brain-Inspired Sparse Coding Here,
we explain the biological basis of using SC-MBM to learn
representations of visual stimuli in the brain from the perspective
of visual encoding mechanisms. Theoretical and empirical
studies suggest that visual stimuli are sparsely encoded in the
primary visual cortex [33, 39, 57], with most natural images
activating only a portion of the neurons in the visual cortex.
This strategy increases information transmission efficiency
and creates minimal redundancy in the brain [39]. As a result,
visual information of natural scenes can be reconstructed from
a small portion of data collected from the primary visual cortex
via different imaging modalities, including fMRI [15,65]. This
observation is interesting for the computer vision community
because the sparse coding could be an efficient way for vision
encoding in computer vision as well [27,64].

Sparse coding is an encoding strategy that in essence uses
over-complete bases to represent data, where more locality is
generally enforced to generate smoother representations [58,66].
In SC-MBM, fMRI data are divided into patches to introduce
locality constraints. Then each patch is encoded into a
high-dimensional vector space with a size much larger than
the original data space, thus creating an over-complete space
for fMRI representation (See Appendix). Emulating the brain
vision encoding, SC-MBM can be a biologically-valid and

effective brain feature learner for fMRI decoding.

3.3. Stage B: Double-Conditioned LDM (DC-LDM)

After the large-scale context learning in Stage A, the fMRI
encoder transforms fMRI data into sparsely coded representa-
tions with locality constraints. To further decode visual contents
from this abstract representation and allow for sampling
variance, we formulate the decoding task as a conditional
synthesis problem and approach it with a pre-trained LDM.

The LDM operates on the image latent space denoted by E(x)
where x is an image in pixel space and E(·) is a VQ encoder. In
our setting, we omit E(x) and use x directly to represent the la-
tent variable of LDM for simplicity. Specifically, given the fMRI
data z, we aim to learn the reverse diffusion process formulated
by q(xt−1|xt,z). As proposed in [42], conditional information
is applied through cross-attention heads in the attention-based
UNet, where CrossAttention(Q,K,V )= softmax

(
QKT

√
d

)
, with

Q=W
(i)
Q φi(xt), K=W

(i)
K τθ(z), V =W

(i)
V τθ(z).

Here, τθ is the fMRI encoder with a suitable dimension projec-
tor, φi(xt) denotes intermediate values of the UNet and W

(i)
Q ,

W
(i)
K , W (i)

V are projector matrices with learnable parameters.
Diversity and consistency are two opposite objectives

when sampling a conditional generative model. Sampling
diversity across various modalities such as label-to-image and
text-to-image is very important in many image-generation tasks.
However, the fMRI-to-image transition relies more on genera-
tion consistency—decoded images from similar brain activities
are expected to be semantically similar. Thus, a stronger
conditioning mechanism is desired to ensure such generation
consistency, especially for probabilistic diffusion models.

In this way, we integrate the cross-attention conditioning
with another conditioning method called the time steps condi-
tioning [9] to provide stronger guidance for our task. In time
steps conditioning, we add σθ(τθ(z)) to time step embeddings,
where σθ(·) is another suitable dimension projector. Time step
embeddings are used in intermediate layers of the UNet, thus we
have φi(xt)=φi(xt,σθ(τθ(z))). We further reformulate the op-
timization objective Eq. (1) to a double conditioning alternation:

Lcond
t =Ex,ϵ∼N(0,1),t

[
∥ϵ−ϵθ(xt,t,τ(z),σ(τ(z)))∥22

]
. (2)

We omit the parameterization symbol θ in τ(·) and σ(·) for
simplicity. Additionally, we have τ(z)∈RM×dτ and σ(τ(z))∈
R1×dt , where dτ and dt are the latent dimensions and time em-
bedding dimension respectively, and M is a tunable parameter.

Finetuning After the fMRI encoder is pre-trained with SC-
MBM, it is integrated with a pre-trained LDM through double
conditioning. Commonly, the encoder’s output is averaged, or
a cls token is appended to produce a pooled 1D feature vector
for downstream tasks [8,18]. This strategy is effective for tasks
like prediction and classification, where learned knowledge



Figure 5. Decoding Performance Comparisons on GOD Test Set. The ground truth, images reconstructed by MinD-Vis and images reconstructed
from three other methods are shown for comparison. MinD-Vis decoded the most accurate and plausible images with semantically similar details.

Figure 6. Quantitative Performance Comparisons on GOD
Test Set. Performance is evaluated in terms of semantic correctness
(1000-trial n-way top-k classification accuracy; the higher the better)
and generation quality (FID; the lower the better).

is expected to be distilled, producing distinguishable features.
However, pooling into a 1D vector is inappropriate for retaining
fMRI representations’ sparsity and information capacity.
Instead, we used convolution layers to pool the encoder’s output
into a latent dimension of RM×dτ as described in Eq. (2).

The fMRI encoder, cross-attention heads, and projection
heads are jointly optimized, while other parts are fixed.
Finetuning the cross-attention heads is critical for bridging the
pre-trained conditioning space and fMRI latent space. The fine-
tuning is performed end-to-end with fMRI-image pairs, during
which a clearer connection between the fMRI and image features
will be learned through the large-capacity fMRI representations.

4. Experiments

4.1. Datasets and Implementation

Datasets Three public datasets were used in this study:
Human Connectome Project (HCP) 1200 Subject Release [56];

Generic Object Decoding Dataset (GOD) [21]; and Brain,
Object, Landscape Dataset (BOLD5000) [5]. Our upstream
pre-training dataset comprised fMRI data from HCP and GOD.
Combining these two, we obtained 136,000 fMRI segments
from 340 hours of fMRI scan, which is, by far, the largest
fMRI pre-training dataset in the fMRI-image decoding task.
The HCP dataset is commonly used in neuroscience research,
containing only fMRI data. While the GOD is an fMRI-image
paired dataset designed for fMRI-based decoding. The pairs
in GOD were used for finetuning in our main analysis. The
GOD consists of 1250 different images from 200 distinct
classes, in which 1200 images were used as the training set,
and the remaining 50 images were used as the testing set. The
training set and testing set have no overlapping classes. The
BOLD5000 dataset was used as the validation dataset in our
study. It consists of 5254 fMRI-image pairs from 4916 distinct
images, 113 images of which are used for testing. This is the
first time that the BOLD5000 is used for fMRI decoding tasks.

Implementation The fMRI pre-training model is similar to
ViT-Large [10] with a 1D patch embedder. We used a patch size
of 16, embedding dimension of 1024, encoder depth of 24, and
mask ratio of 0.75 as our Full model setting with an ImageNet
class-conditioned pre-trained LDM. Different parameter choices
are explored in our ablation study. Unless stated otherwise,
the Full model is pre-trained for 500 epochs and finetuned for
another 500. Results from the best model are reported. Images
are generated at a resolution of 256× 256 with 250 PLMS
steps [30]. See Appendix for dataset and implementation details.

4.2. Evaluation Metric

N-way Classification Accuracy Following [16], we used the
n-way top-1 and top-5 accuracy classification task to evaluate



the semantic correctness of our results, where for multiple
trials, top-1 and top-5 classification accuracies were calculated
in n−1 randomly selected classes plus the correct one. Note
that we did not consider the pixel-level metrics as we aimed
to recover the semantically correct images in this work.

In [16], the authors generated a typical feature for each class
selected and compared the distance between the reconstructed
images and the typical features. However, this metric in [16] is
hard to reproduce, and the semantic classification result largely
depends on how the features are computed. Therefore, we pro-
pose a more straightforward and reproducible method, where
a pre-trained ImageNet1K classifier [10, 36] is used to deter-
mine the semantic correctness of generated images rather than
handcrafted features. We describe this evaluation method in
Algorithm D.1. Specifically, both ground-truth and generated
images are input to the classifier first. Then we check for the
generated image if the top-k classification in n selected classes
matches the ground-truth classification. This metric does not re-
quire the ground-truth image to be from the ImageNet 1k classes.
As long as semantic classification results of the ground-truth and
the generated image match, it will be considered to be correct.

Fréchet inception distance (FID) The FID [19] is a
commonly used metric to assess image generation quality. In
our experiments, we measured the FID between ground-truth
images and generated images in the testing set. Note that FID
is only used as a reference in our experiments due to the limited
number of images available in GOD, which may lead to an
underestimated distribution.

5. Results

Our main results are based on GOD which has no overlap-
ping classes in the training and testing set. The training and
testing were performed on the same subject, as individual dif-
ferences remain a barrier when decoding at the group level [2,
16,21,32,34]. To compare with the literature, we report results
from Subject 3 here and leave other subjects in the Appendix.

We compared our results with Ozcelik et al. [34], Gaziv et
al. [16] and Beliy et al. [16]. Gaziv et al. and Beliy et al. used the
conventional method, which decoded images with higher pixel
similarity but less plausibility and semantic details. On the other
hand, Ozcelik et al. generated more plausible and semantically
meaningful images using a pre-trained GAN. Based on the best-
reconstructed samples of these methods (resized to 256×256),
we performed a 1000-trial, n-way top-k accuracy identification
task as described in Algorithm D.1. The experiment is repeated
for n=50,100 and k=1,5 in the GOD testing set.

From Fig. 6, our identification accuracy outperformed the
Ozcelik et al. in the 50-way top-1 accuracy task by 39% and in
the 100-way top-1 accuracy task by 66%, achieving a success
rate of 0.274 and 0.212 respectively. The generated images
from Gaziv et al. and Beliy et al. were close to the ground-truth
at the pixel level but contained few semantically meaningful

Figure 7. Generation Consistency of MinD-Vis. Images generated by
our method were consistent across different samplings trials, sharing
similar low-level features and semantics.

details, as could be observed in Fig. 5. For example, our method
generated plausible details such as water and waves in the first
and second images, drawings on the bowling ball, wheels of the
carriage, etc., which were not present in the previous decoded
images. The image quality is also reflected by the FID, where
we achieved 1.67 with our best samples, while Ozcelik et al. and
others achieved 2.36 or more with the best samples generated
by their method. Interestingly, color mismatches are observed
in some cases with the color difference well preserved. It can
be explained with [3] which suggests the color category infor-
mation is processed in the frontal lobes as a cognitive process,
while the visual cortex only recognizes the difference in colors.

5.1. Generation Consistency

The consistency of our method was tested by decoding the
same fMRI data multiple times with different random states.
Five samplings with different random states were performed in
the testing set for each fMRI. In the 50-way and the 100-way top-
1 accuracy identification tasks, we achieved an average success
rate across the five samplings of 0.2385±0.030 and 0.1736±0.029

respectively, which are statistically higher than the best sampling
results from Ozcelik et al. by 21% and 35%. Regarding image
quality, we achieved an average FID of 2.22±0.3 across the five
samplings. The standard deviations across 5 samplings indicate
that the generated images will always be in the same semantic
category. It can also be seen in Fig. 7 where isomorphic
samplings share similar details such as shape, color, texture,
and semantics, matching with the ground-truth across trials.

5.2. SC-MBM Design

This section will discuss the ablation study on the SC-MBM
pre-training stage with various important parameters. Results
are summarized in Tab. 1. For all experiments in this section,
the 50-way, top-1 accuracy semantic identification task was
performed with the best models obtained from the finetuning of
500 epochs. Average results over five samplings were reported.

Testing Without SC-MBM To show that useful represen-
tations were learned with SC-MBM, we trained two models



directly using the fMRI-image pairs without the SC-MBM pre-
training. The first model consisted of an untrained fMRI encoder
with the same architecture as the Full model. The second model
consisted of an untrained fMRI encoder with a depth of only 2.
The second model was designed to have fewer parameters, mak-
ing it less likely to overfit the data. All the other settings were
the same. The results correspond to Model 1 and 2 in Tab. 1,
where the Full model significantly outperformed the other two
models without the SC-MBM pre-training, showing that the
pre-training is crucial. In fact, without SC-MBM these two
models even failed to generate sensible images (See Appendix).

Model
Embedding

Dim
Mask
Ratio Params Acc (%)

Full 1024 0.75 303M 23.9±3.00

1 w/o SC-MBM + same Encoder 303M 2.6±1.39

2 w/o SC-MBM + smaller Encoder 25M 3.4±0.86

3 32 0.75 0.3M 5.4±1.50

4 64 0.75 1.2M 6.9±1.10

5 128 0.75 4.7M 14.8±1.78

6 256 0.75 18.9M 15.9±1.70

7 512 0.75 75.6M 17.9±2.58

8 768 0.75 170M 17.7±1.42

9 1280 0.75 472M 15.5±3.83

10 1024 0.35 303M 19.6±3.40

11 1024 0.45 303M 20.0±1.89

12 1024 0.55 303M 18.1±2.87

13 1024 0.65 303M 21.7±3.61

14 1024 0.85 303M 16.1±1.00

† p<0.0001 (purple); p<0.01 (pink); p<0.05 (yellow); p>0.05 (green)

Table 1. SC-MBM Ablation Results. Params: trainable parameters in
the fMRI encoder; Cell colors reflect statistical significance differences
(two-sample t-test) in accuracy compared with the Full model.

Patch Embedding Dimension Boosting the fMRI represen-
tation size using a large patch embedding matches the sparse
coding mechanism of underlying visual information processing
in the brain. Moreover, using a large patch embedding increases
the information capacity of the representation. But larger
embedding means more training parameters leading to a
more data-hungry model. To balance this tradeoff, we tested
SC-MBM models with different patch embedding dimensions
ranging from 32 to 1280 (Model 3-9 in Tab. 1). We found that
the accuracy generally increased as patch dimension increased,
and accuracy peaked at 23.9% with 1024 patch embedding
dimensions (full model), after which accuracy decreased as
patch dimensions increased further.

Mask Ratios We used a high mask ratio in SC-MBM due
to high spatial redundancy in fMRI data. In Tab. 1 Model
10-14, we show that a high mask ratio does not impair the
decoding performance initially, with the highest average
accuracy achieved with a relatively high mask ratio of 0.75.
Importantly, using a high mask ratio significantly reduces

memory consumption since the encoder only operates over
unmasked patches. This is an important consideration for fMRI
as SC-MBM is more memory-intensive than MIM due to the
higher embedding-to-patch-size ratio.

5.3. DC-LDM Finetuning Design

This section will discuss the ablation study on the DC-LDM
finetuning designs from three perspectives: conditioning
methods, optimization designs, and pre-trained LDMs. Here,
all ablations used the same pre-trained fMRI encoder as the Full
model. Only important parameters in the finetuning stage were
varied. The 1000-trial, 50-way, top-1 semantic identification test
was performed. The results are summarized in Tab. 2, where
five different samplings were averaged for each condition.

Model Condition Finetune Pre-trained LDM Acc (%)

Full C + T E + A Label2Image 23.9±3.00

1 C only E + A Label2Image 15.6±0.69

2 C+T E only Label2Image 13.76±2.60

3 C+T E + A Text2Image 13.42±3.00

4 C+T E + A Layout2Image 15.99±3.00

† p<0.0001 (purple); p<0.01 (pink); p<0.05 (yellow); p>0.05 (green)

Table 2. DC-LDM Ablation Results. 1: cross-attention condition
only; 2: optimizing fMRI encoders only; 3: LDM pre-trained on text
conditions (LAION); 4: LDM pre-trained on layout conditions (Open-
Images). Abbr.: C (Cross-attention condition); T (Time condition); E
(Encoder); A (Cross-attention heads). Cell colors reflect statistical sig-
nificance (two-sample t-test) in accuracy compared with the Full model.
Conditioning Methods Here, we showed that the double
conditioning method increased the conditioning strength in
Tab. 2, where using only cross-attention conditioning achieved
an identification accuracy of 15.6% (Model 1), which was
significantly lower than the full method.

Optimizing LDM We proposed to finetune the fMRI encoder
and the cross-attention heads jointly because the LDM was
pre-trained in a different conditioning space. For example,
for the ImageNet class-conditioning pre-trained LDM, the
cross-attention heads were pre-trained to receive the class
label information. To justify this choice, we tested on a model
with the fMRI encoder finetuned and the cross-attention heads
untouched. As shown in Model 2 in Tab. 2, the average
identification accuracy dropped to 13.7% when only the
fMRI encoder was finetuned, indicating stronger semantic
guidance with the double conditioning. The visual quality and
correspondence to the ground-truth of the generated images
also decreased significantly (See Appendix).

Pre-trained LDM The pre-trained LDM determines the
model’s generative ability and the conditioning latent space to
which the fMRI encoder would adapt. We considered three pre-
trained LDM provided by [42], which were trained on datasets
with different conditioning tasks, i.e. ImageNet (label condition-
ing), LAION (text conditioning) [45] and OpenImages (layout



Figure 8. Replication Dataset (BOLD5000). It achieved similar
quantitative results as the GOD dataset. 50-way top-1 identification
accuracy: 34%; FID: 1.2 (Subject 1).

conditioning) [24]. As shown in Model 3-4 Tab. 2, the ImageNet
pre-trained LDM (used in the full model) showed the best per-
formance in the same decoding task. Notably, images generated
by models pre-trained on LAION and OpenImages were less vi-
sually favorable and plausible (See Appendix). This result is sur-
prising because both LAION and OpenImages contain diverse
images from various categories. We attribute the main reason for
their poor performance to the complexity of their conditioning la-
tent space. With limited training pairs, the class-conditioning la-
tent space is easier to adapt to, compared with the latent space of
the text-conditioning model and the layout-conditioning model.

5.4. Replication Dataset

We validated our method on BOLD5000 using the same pre-
trained fMRI encoder. Similarly, the pre-trained encoder was
firstly finetuned for 20 epochs in the testing set of BOLD500
with wrap-around paddings to compensate for the unequal ROI
size from the pre-training set, after which the model is further
tuned with the fMRI-image training pairs in BOLD5000. All
other settings were the same as the Full model. For the four sub-
jects in BOLD5000, we achieved a 19% to 34% best accuracy
in the 1000-trial, 50-way, top-1 accuracy semantic identification
task (See Appendix). The generated images matched the
ground-truth stimulus in both semantics and low-level features
(Fig. 8). Our model accurately reconstructs images containing
objects and animals, architecture, and landscapes.

Interestingly, we reconstructed similar images for some
natural scenes with extra details that do not exist in the
ground-truth stimulus. These extra details, for example, the
river and the blue sky in Fig. 9, may reflect imagined scenery
in the subject’s mind when viewing the visual stimuli, which is
captured in their brain activities. As reported in [21,47], features
of imaginary images can also be decoded from the visual cortex.

To the best of our knowledge, this is the first work that
performs fMRI decoding on BOLD5000. Additionally, adapt-

Figure 9. Extra Features Decoded. Imagery-related details can be
decoded with our method. e.g. the river and blue sky were decoded with
natural scenery stimulus (top row); similar interior decorating of indoor
environments was decoded when a house was presented (bottom row).

ing the same pre-trained model to this dataset shows that the
SC-MBM pre-training indeed learns useful representations of
brain recordings even when distinct domain shifts exist. These
learned representations are shared and generalizable to datasets
with different scanning protocols and preprocessing pipelines.

6. Discussion and Conclusion
Discussion In our experiments, we observed that image
reconstruction quality varied across subjects, which is common
in brain decoding research. This discrepancy may be driven by
differences in the on-line processes of individual brains, namely
differences in the visual perception process anatomically and
functionally. Previous work observed that BOLD fluctuation is
associated with individual task performance [25,26]. Better task
performance and learning ability are usually linked with more
hierarchical architecture in information processing. Thus it may
be easier to decode subjects’ brain activities with better informa-
tion processing ability (i.e. good learners). Although our method
can achieve satisfactory results in many cases, there are still
some negative decoding samples (See Appendix). One possible
reason is that the participants might have stimulus-independent
imagery when they are in the scanner, which is reflected by the
visual cortex. On the other hand, the training set and testing
in the GOD have no overlapping classes, which means even
though we can recover correct geometric information, the class
information cannot be inferred in the testing set.

Conclusion We proposed a two-stage framework MinD-Vis
to decode visual stimuli using only a few paired fMRI-image
annotations from brain recordings. In Stage A, we used an
fMRI pre-training scheme with masked modeling as a pretext
task to learn generalizable context knowledge in an enlarged
representation space. We employed a latent diffusion model
with double conditioning in Stage B to generate plausible seen
images from learned fMRI representations. We validated the
decoding results of MinD-Vis on multiple datasets and showed
that compared with previous methods, our model generates
more plausible images that are semantically similar to the
original stimuli, thus establishing a new state-of-the-art.
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Appendix

A. More Generation Samples
All samples are generated at a resolution of 256×256×3 with 250 PLMS [30] steps. More samples can be found and generated

in our code base.

Figure A.1. Full Samples for Subject 3 in GOD.



Figure A.2. Full Samples for BOLD5000(Cont.).



Figure A.3. Full Samples for BOLD5000.



(a) GT (b) Full Model (c) w/o SC-MBM Small (d) w/o SC-MBM Large

(e) Optimize Encoder only (f) Single Conditioning
(g) Text-to-Image Pre-trained
LDM (LAION)

(h) Layout-to-Image Pre-trained
LDM (OpenImages)

Figure A.4. Samples for Ablation Study. (a) Ground-truth stimulus. (b) Full model: SC-MBM pre-training; optimize the fMRI encoder and
cross-attention heads; double-conditioned; Label-to-Image pre-trained LDM (ImageNet). (c) Model with small fMRI encoder without SC-MBM
pre-training. (d) Model with the same fMRI encoder as the Full model without SC-MBM pre-training. (e) Optimize the fMRI encoder only, keep
the cross-attention heads untouched. (f) Single conditioning. All other parameters are the same with the Full Model. The samples are obtained
after finetuned for 500 epochs. See Tab. 1 and Tab. 2 for quantitative results of full test samples.

Figure A.5. Typical Failure Cases of Our Method. As discussed in the main text, we assume the failure cases are related to two reasons. On one
hand, the GOD training set and testing set have no overlapping classes. That is to say, the model could learn the geometric information from
the training but cannot infer unseen classes in the testing set. On the other hand, subjects might have some other stimuli-unrelated thoughts, which
could be captured by fMRI and decoded by our method



B. Dataset and fMRI Preprocessing Details
Human Connectome Project (HCP) 1200 Subject Release [56]: large-scale magnetic resonance imaging dataset used for

pre-training. We utilized around 2000×15-min 3T resting state fMRI runs from 1091 subjects. The visual cortex (V1-V4) defined
in [17] is used as the ROI, which gives approximately 4000 voxels.

Generic Object Decoding Dataset (GOD) [21]: human fMRI scans with 1250 distinct images from ImageNet as a visual
stimulus. During the fMRI scan, subjects were instructed to fixate on a cross located at the center of the presented images. This
dataset consists of 1250 natural images from 200 distinct classes from ImageNet, where 1200 images are used for training. The
remaining 50 images from classes not present in the training data are used for testing. Each image in the training set is presented
once to the subject during the scan, while each image in the testing set is presented 35 times. Following the preprocessing in [21],
the 35 repetitions are averaged for each image to create a higher SNR fMRI sample for testing. This dataset is widely used in brain
image decoding [2,13,16,32,46,47]. We used the manually defined ROIs (V1-V4, FFA, LOC, HVC) from the functional localizer
runs provided in [21]. Altogether, the ROIs have around 4500 voxels per subject, with some individual variance as shown in Fig. 2.

Brain, Object, Landscape Dataset (BOLD5000) [5]: human fMRI study with 5,254 fMRI-image pairs from 4,916 distinct
natural images (including various objects and indoor/outdoor scenes) from Scene UNderstanding (SUN) [62], Common Objects
in Context (COCO) [29] and ImageNet [7]. In this dataset, 4,803 images are presented once, and 113 images are repeated twice
or three times. The repeated data are also averaged to construct the testing set as in the GOD dataset. To the best of our knowledge,
this dataset is the first time is applied to an image reconstruction task. The author also provided manually annotated ROIs based
on a functional localizer. As a result of different scanning resolutions and ROI definition methods, the number of voxels in the defined
ROIs is approximately 1,500 for each subject. Nonetheless, we show in our results that the pre-trained encoder can be directly applied
to this dataset despite this difference in ROI definition and size.

Pre-training dataset Our upstream pre-training dataset is comprised of fMRI recordings from HCP and GOD. Following the
processing step in target dataset [21], we averaged every 8.64 seconds (i.e. 12 time frames) of scans from HCP, which gives 130,000
fMRI time points. Including the training and testing fMRI in GOD, we have a pure fMRI dataset of 136,000 samples for pre-training.
This pre-training dataset is, by far, the largest pre-training fMRI dataset used in this task.

To handle the different voxel numbers, all fMRI data are first padded to the maximum length in a wrap-around manner and then
padded to the boundary of the patch size. Additionally, training fMRI is normalized to have zero mean and unit standard deviation.
The testing samples are normalized with the mean and standard deviation from the training set.

C. Results on Different Subjects
The GOD consists of five different subjects, and the BOLD5000 consists of four subjects. The signal-to-noise ratio (SNR) is

usually used to quantify the quality of a dataset. A higher SNR means better data quality. As reported by their authors respectively,
the BOLD5000 has a much higher SNR than GOD. Within the GOD, the SNR differs among subjects as shown in Tab. C.1, where
Subject 3 has a significantly higher SNR than the others. A higher SNR leads to better performance in our experiments, which
has also been shown in various literature. Other than possible noise introduced during the scan, the SNR is also related to the subjects’
on-line processing or information processing ability. Subjects with better information processing ability (i.e. better learners) will
have a higher SNR during the scan under the same scanning conditions.

Dataset GOD BOLD5000
Subject Sub1 Sub2 Sub3 Sub4 Sub5 CSI1 CSI2 CSI3 CSI4
Acc (%) 9.1 13.9 27.4 15.2 14.3 34.5 18.5 21.0 20.9

FID 2.2 1.6 1.7 2.7 2.4 1.2 1.9 1.4 1.3
SNR 0.064±0.07 0.061±0.05 0.10±0.11 0.092±0.1 0.065±0.06 4.65±0.2 5.20±0.2 5.55±0.35 5.40±0.1

Table C.1. Full Results for All Subjects. The accuracy is obtained from the 1000-trials 50-way top-1 semantic classification test on the best-generated
samples. SNR: signal-to-noise ratio. The voxel-wise mean SNR is obtained from [21] and [5] respectively.

D. More Implementation Details
D.1. Evaluation Metric Implementation

This algorithm performs the N-trial, n-way top-1 semantic classification test. It measures the semantic accuracy of generated
images. We describe our evaluation method in Algorithm D.1, where the generated image and its corresponding ground-truth



image are denoted by x and x̂ respectively, and y is for the class label. This metric relies on a pre-trained ImageNet classifier to
determine whether x and x̂ belong to the same class rather than using handcrafted features to represent each class. This method
is thus reasonable and easily reproducible. We used a pre-trained ResNet as the classifier. We also showed that using other model
based pre-trained classifiers will not change the result of this metric.

Algorithm D.1 N-Trials n-way Top-1 Accuracy Classification

1: Input pre-trained classifier C(·), image pair (Generated Image x, Corresponding GT Image x̂)
2: Output success rate r∈ [0,1]
3: for N trials do
4: ŷ←C(x̂) get the ground-truth class
5: {p0,...,p999}←C(x) get the output probabilities
6: {pŷ,py1,...,pyn−1

}← pick n-1 random classes
7: success if argmax

y
{pŷ,py1,...,pyn−1

}= ŷ

8: end for
9: r= number of success / N

D.2. SC-MBM Pre-training

In Masked Image Modeling (MIM) [18], images are divided into patches which are sequentially transformed into embeddings
to adapt to a transformer-based architecture [10]. Following this practice, we divided fMRI voxels into patches which will be
subsequently transformed into embeddings using a one-dimensional convolutional layer with a stride of the patch size.

A patch size of 16 and an embedding dimension of 1024 were used as the Full model. Notice that our embedding size to patch
size ratio is much larger than that of MIM. For example in [18], the authors used a patch size of 16 and embedding dimension 768,
which gave an embedding to patch dimension ratio: 768/(16·16·3)=1, compared to ours: 1024/(16)=64. This design largely
expands the representation dimension of fMRI data, significantly boosting the information capacity of the fMRI representations.
This design is justified by both considering the dimension gap between fMRI and natural images, as well as the hypothesis of sparse
coding in the visual encoding process.

Following [63], we adopt an asymmetric architecture where the decoder is much smaller than the encoder. Before feeding patch
embeddings to the encoder, a random portion is masked. We used a large mask ratio similar to the mask ratio used in MIM due
to the similarity in information density between fMRI data and images. We additionally embed mask tokens and include positional
embeddings along with the patch encodings at the end of the encoder and transform them into the decoder’s embedding space via
a linear projector. On the other hand, our decoder aims to recover the masked patches with the voxel value as the prediction target.

To train the data-hungry model like the ViT, we also applied random sparsification (RS) for data augmentation, where 20% of
voxels in each fMRI were randomly selected and set to zero.

Hyperparameters used in the SC-MBM pre-training stage are listed in Tab. D.2. All other unlisted parameters are set to their
defaults. The SC-MBM pre-training is performed on 8 RTX3090ti GPUs until the model converges. Examples of masked brain
prediction are shown in Fig. D.6.

parameter value parameter value parameter value parameter value
patch size 16 encoder depth 24 decoder embed dim 512 clip gradient 0.8
embedding dim 1024 encoder heads 16 max learning rate 2.5e-4 weight decay 0.05
mask ratio 0.75 decoder depth 8 warm-up epochs 40 batch size 500
mlp ratio 1.0 decoder heads 16 max epochs 500 optimizer AdamW [31]

Table D.2. Hyperparameters used in the Full model for SC-MBM Pre-training.

D.3. DC-LDM Finetuning

The finetuning is performed by jointly optimizing the fMRI encoder and cross-attention heads in the LDM using the training set.
Specifically, for an fMRI-image pair, the image will be encoded into the latent space via a VQ encoder, which will be subsequently
used as an objective to train the fMRI encoder and cross-attention heads. In the forward pass, fMRI data is passed through the
encoder, producing a patchified enlarged representation. Then this representation is projected into an intermediate space with a



Figure D.6. Examples of masked brain prediction. First column: original fMRI data (Visual Cortex) flattened; Second column: masked fMRI;
Third column: data recovered from SC-MBM decoder. Mask ratio: 0.75. The correlations between the original and recovered fMRI are also shown.

channel size of M . This intermediate representation will be used as the key and value in cross-attention modules in the UNet and
will also be added to the time embedding used in the UNet. The UNet tries to denoise a Gaussian noise with the fMRI representation
as a condition, mimicking the reverse transitions through a Markov Chain. L2 loss is used in training. During the training, only
the fMRI encoder and cross-attention modules in the LDM are optimized. Other parts are kept intact.

Operating in the image latent space, the computations needed for DC-LDM finetuning are small. All finetunings in our
experiments are performed with a single RTX3090ti GPU for 500 epochs. The detailed hyperparameters are shown in Tab. D.3.
All other unlisted parameters are set to their defaults. Please see [42] for the detailed model architecture of the LDM.

parameter value parameter value parameter value parameter value
batch size 5 diffusion steps 1000 image latent dim 64×64×3 learning rate 5.3e-5
image resolution 256×256×3 optimizer AdamW pre-trained type Label-to-Image M 77

Table D.3. Hyperparameters used in the Full model for DC-LDM Finetuning.

E. Other Ablation Studies
Patch Sizes In [10], an image is divided into sixteen 16×16 patches which can be considered 16 words. Analogous to the fMRI
data, the more words are used to describe the data, the higher accuracy of the resulting representation will be. Therefore, smaller
patches will lead to better results if the number of voxels remains unchanged. This claim is justified by Tab. E.4. A continuous
decrease in accuracy can be observed when the patch size is increased from 16 to 64. However, the minimal patch size applicable
is constrained by available memory, as the number of patches increases drastically with smaller patch size.

Encoder Depth The fMRI encoder depth is set to 24 in our Full model similar to the ViT-Large [10]. However, different depths
lead to a different number of parameters and encoding capabilities. Usually, a deeper model is appreciated, but it comes with the
need for more training samples as well. Therefore, considering the limited data, we explore whether a smaller model would have
better results. To maintain an asymmetrical architecture, the depth of the SC-MBM decoder is kept at half of the encoder’s depth.
A deeper fMRI encoder (as deep as 24 transformer blocks) gives the best result as shown in Tab. E.4.

Mask Stragtey In [18], different masking strategies are tested for images, and the authors conclude that random masking is the
best strategy for images. We explore in our ablation if it is the case for fMRI learning. For images, there are different strategies
such as center masking and grid masking due to the geometric correlations among pixels in an image. For fMRI data, brain activities



are reflected by the connectivity among groups of voxels (functional networks). Seven networks in the visual cortex are used in
our study (i.e. V1-V4, FFA, PPA, and LOC), in which the V1, the primary visual cortex, consists of the most voxels and is the first
stage of visual processing. Therefore we design a focus masking strategy similar to the center masking in images. In the center
masking, pixels at the center of an image will be masked the most because the center of an image usually contains the richest
information. Learning to recover the center potentially is beneficial to learning the underlying semantics of an image. Similar to the
center masking, our focus masking in fMRI masks more patches in the V1 region than in other regions. However, in our experiments,
the focus masking does not outperform the random masking strategy as shown in Tab. E.4.

Pretext Tasks As discussed, since fMRI voxels are correlated reflecting the underlying brain activities, masked modeling is a suitable
learner for fMRI representations. With SC-MBM as a pretext task, self-supervised learning can be performed in a large unpaired fMRI
dataset. On the other hand, considering a small part of paired fMRI are available in the training set. Therefore, it is intriguing if we
can use the paired information in fMRI for the pre-training as well. So we include the image feature as another pretext task together
with the masked modeling to guide the context learning. Specifically, the training set will be divided into two parts: the part with
paired images; and the part without paired images. To construct a mini-batch, we randomly sample fMRI from these two parts. In this
design, another decoder is added to decode image features. The image features extracted from the second layer of a pre-trained VGG
will be used as a target for this decoder. During training, the image feature reconstruction loss will be added to the MBM loss with
a regularization term. However, adding the image guidance does not outperform the MBM only pre-training as shown in Tab. E.4.

Unequal Length Handle Due to individual variability, even in the same dataset, the voxel numbers of individuals are different.
We need to handle this unequal length to include different subjects in the pre-training. The two most intuitive ways are considered:
pad to the maximum length with a constant; cut to the minimum length. Besides padding with a constant, we pad the data in a
wrap-around manner. From Tab. E.4 we can see that cutting the data gives the worst performance and wrap-around padding gives
the best performance.

Crop Ratio In the finetuning, images are randomly center-cropped for augmentations. We tested different crop ratios, i.e. from
0 to 0.4. It is found that a crop ratio of 0.2 gives the best performance. Random cropping is an efficient augmentation in our task
because the subjects’ perceptions may be focused on different parts of the figure, even though they were instructed to fixate at the
center of the image.

Patch size 16 32 64
Acc (%) 23.9 18.2 16.4

(a) Patch Size

Encoder depth 24 8 2
Acc (%) 23.9 14.8 13.6

(b) fMRI Encoder Depth

Strategy random focus
Acc (%) 23.9 16.3

(c) Mask Strategy

Task SC-MBM SC-MBM+image
Acc (%) 23.9 16.1

(d) Pretext Tasks

Strategy wrap constant cut
Acc (%) 23.9 19.6 14.8

(e) Unequal Length Handle

Ratio 0 0.1 0.2 0.4
Acc (%) 14.9 17.9 23.9 15.2

(f) Crop Ratio

Table E.4. Other Design Ablations. The 1000-trial 50-way top-1 semantic classification accuracy is reported. All ablations are pre-trained for
500 epochs and then finetuned on GOD for another 500 epochs. Settings used in the Full model are colored in gray.

F. Extra Notes on Sparse-Coded Masked Brain Modeling
In our design, we use a large embedding-size-to-patch-size ratio to increase the information capacity of fMRI representations,

which mimics the sparse coding mechanism underlying the encoding procedure of the visual cortex. Here, we provide a formal
definition of the information capacity and explain the connection with the sparse coding mechanism.

Definition 1 (Data Representation) For a piece of data given by a one-dimensional code vector x∈RL, let f be an injective function
that maps x from the data domain to a representation domain, namely f(x)=y, where y∈RL̃ is a representation of x.

Definition 2 (Information Capacity) For a random variable X, the Shannon entropy of X is upper bounded by its cardinality, which
is given by H(X)≤ log(|X |). We define log(|X |) as the information capacity of random variable X.

The inequality in Definition 2 can be easily proved with Jensen’s inequality regardless of the distribution of X. Obviously, for a rep-
resentation Y , if the dimension of Y is larger, the representation space will be larger. Hence, Y will have a larger information capacity.
To measure the change of information capacity after the representation mapping, we can simply divide the representation dimension by
the data dimension, namely,R=L̃/L. In the context of masked modeling, we refer toR as the embedding-size-to-patch-size ratio. The



essence of sparse coding is to use sets of over-complete bases to efficiently represent data [27]. Analogous to this over-completeness,
we use a representation space that is much larger than the data space, namely higher R, to learn the representations of the fMRI. Data
locality is included in the representations by dividing the fMRI time series into patches and transforming patches into embeddings.


